
Index

Chapter Title Page

1 Introduction to .g 2-5

2 Language Basics 6-10

3 Control Flow 11-15

4 Functions 16-20

5 Logic and Conditions 21-26

6 Arrays and Objects 27-31

7 Built-in Functions 32-37

8 Error Handling 38-41

9 The Standard Library
(std@1.0/)

42-47

10 Modules and Imports 48-52

11 User-Defined Types 53-57

12 Building CLI and File
Tools

58-63

13 Future Features &
Language Design

64-67

A Appendix A: Grammar
& Syntax Reference

68-71

B Appendix B: Keywords,
Operators, Built-ins

72-74

C Future Updates &
Feedback

75

1

Chapter 1 — Introduction to .g

1.1 Overview
.g is a lightweight, cross-platform scripting language designed for
simplicity, clarity, and modular development. It is built entirely in
JavaScript and executed on the Node.js runtime. The language emphasizes
expression-based design, minimal syntax, and extensibility through a
built-in standard library.

.g is ideal for:

● Writing automation scripts
● Prototyping tools
● Educational interpreters
● Extending apps with custom logic

Its syntax avoids noise (no semicolons), encourages readable code, and
provides powerful standard features such as file I/O, string manipulation,
math utilities, and structured control flow.

1.2 Motivation
.g was created to solve a personal need: a scripting language that is fully
transparent, customizable, and embeddable into other projects. Unlike
larger languages with complex runtimes or legacy syntax, .g offers a
controlled environment where every rule, token, and feature is built from
scratch.

Core motivations include:

● Full ownership of language behavior and structure
● Simplicity without sacrificing functionality
● Integration into Node.js-based tools and scripts
● Extensibility through modular standard libraries

2

Whether you're writing scripts or building a custom REPL, .g gives you a
solid foundation with minimal overhead.

1.3 Installation
.g is distributed via npm under the package name @singhgurjot/g-lang.

To install it globally:

This provides a global g command that can be used from any terminal
session.

Requirements:

● Node.js v14+
● npm (Node Package Manager)

1.4 Your First .g Program
Create a file named hello.g:

Then execute it using:

3

https://www.npmjs.com/

Expected output:

This command invokes the .g interpreter using the global CLI, parses your
code, and executes it in a scoped environment.

1.5 Features at a Glance
The .g language supports a growing set of built-in capabilities:

Core Language

● Variables via var
● Expression-based flow (if, else, while)
● Functions with function and return
● Arrays, objects, indexing, and property access
● Logical and comparison operators (==, !=, &&, ||, etc.)

Standard Library: std@1.0/

The standard library is bundled by default and includes:

● math: Random, rounding, trigonometry, constants (math.PI,
math.floor(), etc.)

● string: Case manipulation, splitting, searching, replacing
● array: Push, pop, length, inclusion checks
● fs: Read, write, append, delete files
● time: Current timestamp, ISO time, blocking sleep
● cli: input() prompts and args() for command-line arguments
● json: toJSON() and parseJSON() for serialization

All modules are natively available — no extra setup needed.

4

1.6 Cross-Platform Compatibility

Because .g is implemented in JavaScript and runs on Node.js, it works on:

● Windows
● macOS
● Linux
● Any system that supports Node.js

Once installed via npm, it behaves like any standard CLI tool.

1.7 Summary
.g is a script-first, logic-focused language built for practical use. It’s simple
to learn, transparent by design, and ready to scale with your projects. With
its minimal syntax, modular standard library, and clean execution model, .g
gives you the control of a scripting language — without the complexity.

5

Chapter 2 — Language Basics

This chapter introduces the foundational syntax and core constructs of the
.g language. You’ll learn how to declare variables, print output, work with
different data types, and build expressions — everything you need to start
writing real .g programs.

2.1 Variable Declarations
Variables in .g are declared using the var keyword. A variable holds a value
and can be reassigned later.

Syntax:

Variables are dynamically typed — the type is inferred from the value
assigned.

2.2 Built-in Data Types

6

.g supports several primitive and compound data types:

Type Example

Number var a = 42, var pi = 3.14

String var s = "hello"

Boolean var flag = true

Null var x = null

Array var items = [1, 2, 3]

Object var person = { name: "Aman" }

These types are compatible with built-in functions like type(), length(), and
operators such as +, ==, and &&.

2.3 Output with say

Use the say statement to print output to the console.

Example:

Output:

2.4 Arithmetic Expressions

7

.g supports standard arithmetic operations:

Operator Description Example

+ Addition X + Y

- Subtraction X - Y

* Multiplication X * Y

/ Division X / Y

Example:

All expressions follow standard mathematical precedence.

2.5 Logical and Comparison Operators

8

Logic and conditionals are built-in and follow familiar patterns.

Operator Meaning Example

== Equal too x == 5

!= Not equal to x != 10

> Greater than x > 2

< Less then x < 5

>= Greater than or Equal
too

x >= 10

<= Less than or Equal too x <= 10

&& Logical AND a && b

! Logical OR !isReady

Booleans are strictly evaluated, and null is treated as falsy.

2.6 Comments
Use // to write comments:

Comments are ignored by the interpreter.

2.7 Code Formatting

9

.g has no required indentation rules, but clean formatting is encouraged.

● No semicolons are needed
● Curly braces {} are used for blocks
● Expressions and statements can span multiple lines if necessary

Example:

2.8 Summary
In this chapter, you’ve learned the essential building blocks of .g:

● Declaring variables with var
● Working with numbers, strings, booleans, arrays, and objects
● Printing output with say
● Performing arithmetic and logic operations
● Writing clean, readable code

These are the foundations for writing every .g program. In the next chapter,
we’ll explore control flow in depth — including conditionals and loops.

10

Chapter 3 — Control Flow

Control flow statements allow your program to make decisions and repeat
actions based on conditions. .g includes two fundamental control structures:
if statements and while loops. This chapter covers their syntax, usage, and
best practices.

3.1 Conditional Execution: if and else

Use if to execute code only when a condition is true. You can optionally
include an else block for alternative behavior.

Syntax:

Example:

11

Output:

Conditions can use comparison operators (==, >, etc.) or any expression that
returns a boolean.

3.2 Chained Conditions with else if
.g does not have a dedicated else if keyword. However, you can chain if
statements inside else blocks:

12

3.3 Repeating Code with while
Use a while loop to repeat a block of code as long as a condition remains
true.

Syntax:

Example:

Output:

Be cautious: a while loop will continue forever if the condition never
becomes false.

13

3.4 Nesting and Scope
Both if and while support nested blocks:

Output:

Variables declared with var inside the loop persist in the outer scope unless
re-declared.

3.5 Null and Boolean Conditions
Any valid .g expression can be used as a condition. Some notes:

● true and false are native boolean literals.
● null is treated as false.
● Strings, numbers, and arrays are truthy unless explicitly compared.

14

3.6 Common Pitfalls
● Always use {} braces — no implicit indentation-based blocks.
● Ensure that loop variables are updated inside the loop to avoid

infinite loops.
● Boolean operators (&&, ||, !) must be written correctly — use

parentheses if in doubt.

3.7 Summary
This chapter covered .g's control flow capabilities:

● Conditional execution with if, else, and nested blocks
● Looping with while
● Boolean logic and expression-based decisions
● Proper scoping and structure

In the next chapter, we’ll dive into functions — how to define, call, and
return values in reusable logic blocks.

15

Chapter 4 — Functions

Functions allow you to group code into reusable blocks that can be
executed multiple times with different inputs. In .g, functions are first-class
citizens and support parameters, return values, and modular usage.

4.1 Function Declarations
Functions are defined using the function keyword, followed by a name, a
parameter list in parentheses, and a code block in {} braces.

Syntax:

Example:

This defines a function named greet that accepts a single parameter.

16

4.2 Calling Functions
Once defined, a function can be called by using its name followed by
parentheses.

Example:

Arguments are passed in the same order as parameters.

4.3 Returning Values
Use return inside a function to send back a value to the caller.

Example:

If a function has no return, it returns null by default.

17

4.4 Local Scope
Variables defined inside a function are local to that function.

The variable result is not accessible outside the function.

4.5 Nested Function Calls
Functions can be nested or used inside expressions.

Functions are evaluated from the inside out, like regular expressions.

18

4.6 Function Composition & Reuse
Functions can call each other, or themselves (for recursion), though .g
currently lacks tail-call optimization or stack guards. You can safely
structure helper functions like this:

4.7 Exporting and Importing Functions
Functions can be shared across .g files using export and import. For now,
we’ll just note that this feature exists — a full breakdown is in Chapter 12.

Import.g:

19

Export.g:

4.8 Summary
Functions in .g are compact, expressive, and easy to reuse. This chapter
introduced:

● Declaring functions with function
● Passing parameters and arguments
● Using return to return values
● Calling and composing functions
● Function scope rules

Next, we’ll move into the logic system of .g — covering equality, logical
operators, and how to build expressive conditions with clean syntax.

20

Chapter 5 — Logic and Conditions
The logic system in .g allows you to evaluate conditions, compare values,
and control the flow of your program using boolean expressions. This
chapter covers equality checks, logical operators, and how they interact
with other core features like if, while, and functions.

5.1 Boolean Values
.g includes two native boolean literals:

These are used in conditionals, comparisons, and logical expressions.

21

5.2 Comparison Operators
Comparison operators return a boolean result and are commonly used in
conditions.

Operator Meaning Example

== Equal to X == 5

!= Not Equal to name != "Grey"

> Greater than x > 3

< Less than x < 10

>= Greater or equal score >= 80

<= Less or equal score <= 50

Example:

22

5.3 Logical Operators
Logical operators combine boolean values and expressions.

Operator Description Example

&& Logical AND (both
true)

x > 0 && x < 10

! Logical NOT (negation) !isReady

Example:

5.4 Truthy and Falsy Values
In .g, expressions are strictly evaluated. The following values are treated
as falsy:

● false
● null

23

Everything else (including 0, "", []) is considered truthy by default unless
compared explicitly.

Output:

5.5 Logical Grouping with Parentheses
Use parentheses () to group logical conditions and control evaluation
order.

Logical expressions without parentheses follow standard operator
precedence: ! > && > ||

24

5.6 Negation with !
You can invert any boolean expression using the ! (NOT) operator.

Output:

5.7 Combining Conditions
Logical expressions can be nested and combined for clarity.

25

5.8 Summary
This chapter introduced .g's logical and comparison system, including:

● Boolean literals (true, false)
● Comparison operators (==, !=, >, etc.)
● Logical operators (&&, ||, !)
● Grouping expressions with parentheses
● Understanding truthy and falsy values

In the next chapter, we’ll explore arrays and objects — and how they’re
used to structure and organize data in .g.

26

Chapter 6 — Arrays and Objects
Data structures are essential for organizing and managing values in any
language. .g supports two primary compound data types: arrays and
objects. This chapter explores how to create, access, and manipulate them
effectively.

6.1 Arrays
An array is an ordered list of values. Use square brackets [] to define them.

Example:

Arrays can contain any value type, including other arrays or objects.

6.1.1 Accessing Array Elements

Use zero-based indexing with square brackets:

Accessing an invalid index returns null.

27

6.1.2 Modifying Arrays

Use assignment to update values:

Note: this requires the index to already exist.

6.1.3 Built-in Array Functions

The standard library provides array helpers under the array namespace:

Function Description

array.length(arr) Returns array length

array.push(arr, val) Appends a value

array.pop(arr) Removes and returns last item

array.includes(arr, v) Returns true if value exists

Example:

28

6.2 Objects
Objects store key–value pairs, and are defined using curly braces {}.

Example:

Keys are always strings; values can be any type.

6.2.1 Accessing and Updating Properties

Use dot notation or bracket notation:

Dot notation is preferred for known keys.

29

6.2.2 Nested Objects

Objects can be nested for structured data:

6.3 Arrays of Objects
These structures are common when modeling collections:

You can combine loops with arrays to iterate through them (covered in
Chapter 9).

30

6.4 Objects as Function Arguments
Objects work well for passing structured parameters:

6.5 Summary
In this chapter, you learned how to structure and manipulate data using:

● Arrays — ordered lists accessed via index
● Objects — key–value mappings accessed via property names
● Dot/bracket notation
● Built-in functions like array.length() and array.includes()

Next, we’ll cover built-in functions like type(), length(), and how to use .g’s
utility functions to inspect and process data.

31

Chapter 7 — Built-in Functions
The .g language provides a collection of built-in functions that handle
common tasks like inspecting types, reading input, working with files, and
manipulating data. These functions are available by default in every .g
script and do not require any imports.

7.1 type(value)
Returns the type of the given value as a string.

Examples:

7.2 length(value)
Returns the length of a string or array.

Examples:

Throws an error for unsupported types.

32

7.3 input(prompt)
Prompts the user for input. Returns a string. If no prompt is provided, it
uses an empty one.

7.4 args()
Returns an array of command-line arguments passed when running the .g
script.

Command:

Script:

33

7.5 File I/O Functions
These functions enable interaction with the file system.

read(filename)

Reads and returns the contents of a file.

write(filename, content)

Writes content to a file (overwrites existing file or creates a new one).

append(filename, content)

Appends content to an existing file.

append(filename, content)

34

Appends content to an existing file.

exists(filename)

Returns true if the file exists.

delete(filename)

Deletes a file.

7.6 JSON Utilities

toJSON(value)

Serializes a .g value (object or array) into a JSON string.

35

parseJSON(string)

Parses a JSON string and returns the corresponding .g object.

7.7 Time Utilities

now()

Returns the current time in ISO format.

timestamp()

Returns the current time in milliseconds since the UNIX epoch.

36

sleep(ms)

Pauses execution for a specified number of milliseconds. (Blocking)

7.8 Summary
This chapter introduced the built-in functions available globally in .g. You
now know how to:

● Inspect values using type() and length()
● Prompt user input and access CLI args
● Perform file I/O with read(), write(), append(), etc.
● Use toJSON() and parseJSON() for structured data
● Access current time and pause execution

In the next chapter, we’ll cover error handling in .g, including how to use
try and catch to prevent crashes and gracefully handle unexpected failures.

37

Chapter 8 — Error Handling
In any programming language, runtime errors are inevitable. The .g
language supports structured error handling using try and catch blocks.
This allows you to detect, isolate, and respond to failures — without
crashing your entire program.

8.1 The try / catch Statement

The try block lets you run a section of code that might fail. If an error
occurs, the catch block executes instead.

Syntax:

Both blocks are required. You cannot use try without a catch.

Example:

38

If missing.txt does not exist, the read() function will throw an error —
and the catch block will handle it without stopping the script.

8.2 Scope Inside try / catch
Variables declared inside the try block are local to that block — but values
can be safely passed or reassigned:

This works because the outer result is updated in both paths.

8.3 Common Error Sources

Some typical cases where try/catch is useful:

Function Error Condition

read(file) File not found

delete(file) File doesn’t exist or can’t be deleted

parseJSON(text) Invalid JSON string

array.pop() Popping from an empty array

type() Unsupported type

39

Use try/catch to isolate unsafe logic or file-dependent operations.

8.4 No Error Object (yet)

In .g, the catch block does not receive an error object. You cannot access
the exact message or stack trace at this time.

Future versions of .g may support:

But for now, error details are only printed to the console (if not caught).

8.5 Nested Error Handling
You can nest try/catch blocks to handle different levels of failure.

40

Use sparingly — nested try blocks can make code harder to follow.

8.6 Defensive Programming
Error handling isn’t just about reacting — it’s about anticipating. Use
exists() and type() to avoid errors before they occur.

This keeps your code safer and cleaner.

8.7 Summary
In this chapter, you’ve learned how to make your .g programs more
reliable by using:

● try and catch blocks
● Defensive checks like exists() and type()
● Structuring fallback logic
● Avoiding common failure points

Error handling makes .g suitable for real-world scripting — where missing
files, bad inputs, or failed operations shouldn't bring everything to a halt.

In the next chapter, we’ll dive into the .g Standard Library (std@1.0/) and
explore its math, string, array, and utility modules in detail.

41

Chapter 9 — The Standard Library
(std@1.0/)

.g ships with a built-in standard library under the namespace std@1.0/. It
includes powerful modules for math, strings, arrays, files, timing, CLI tools,
and JSON — allowing you to write real-world scripts without external
dependencies.

No import is required — these functions are available by default.

9.1 math Module
Provides math utilities, constants, and conversions.

Common Math Functions:

Constants and Trig:

42

9.2 string Module
Utilities for string transformation, searching, and slicing.

Examples:

Advanced:

9.3 array Module
Basic array manipulation functions.

Examples:

Note: Arrays are passed by reference — modifications are permanent.

43

9.4 fs Module (File I/O)
Built-in global functions, not namespaced under fs, but conceptually
grouped here.

Read and Write:

File Existence and Deletion:

9.5 time and sleep Utilities

Timestamps and ISO Strings:

44

Blocking Sleep:

9.6 CLI Tools
Use input() for prompts and args() for command-line arguments.

Input Prompt:

Reading CLI Args:

45

9.7 JSON Handling

Convert Object to JSON:

Parse JSON String:

9.8 Directory Utilities

Throws error if the path is invalid or not a directory.

46

9.9 Summary
The std@1.0/ library makes .g powerful out of the box, covering:

● Math utilities and constants
● String manipulation
● Array operations
● File system access
● Timing and delays
● Input and argument handling
● JSON parsing
● Directory listing

In the next chapter, we’ll explore .g's import/export system for organizing
code across files and creating reusable modules.

47

Chapter 10 — Modules and Imports
As your projects grow, organizing code across multiple files becomes
essential. .g supports modular programming using import and export
declarations — allowing functions to be shared between files and reused
cleanly.

This chapter covers how .g handles modules, how the import/export system
works, and how to write modular, maintainable .g programs.

10.1 Exporting Functions

To make a function available to other .g files, use the export keyword
before the function declaration.

Example: math.g

Only exported functions can be imported into other scripts. Non-exported
functions are local to their file.

48

10.2 Importing Functions

Use the import statement to bring exported functions from another .g file
into the current one.

Syntax:

The path must be a string literal and must include the full file name,
including the .g extension.

Example: main.g

10.3 How Imports Work Internally

When an .g file is run, the interpreter does the following:

1. Resolves the file path (relative to the current script).
2. Reads and parses the imported file.
3. Look for export declarations.
4. Caches the parsed module to prevent repeated imports.
5. Makes selected exported functions available to the current script.

Only exported function declarations are currently supported. Variable or
constant exports are not allowed.

49

10.4 Avoiding Name Collisions
Functions are imported into the global scope, so avoid name collisions:

Overwriting an imported name is possible but discouraged. If a function is
already defined, .g will use the last assignment.

10.5 Importing from Multiple Files
You can import from more than one .g file within the same script.

Each import must use its own import { ... } from "..." block.

50

10.6 Import Errors
If a requested function isn’t exported by the module, the interpreter throws
a clear error:

If the file does not exist or contains syntax errors, the import will fail at
runtime.

10.7 No Circular Imports
The interpreter prevents circular imports using internal caching. If a file
tries to import itself (directly or indirectly), it is skipped silently to avoid
infinite loops.

10.8 Suggested File Structure

Here’s a suggested folder layout for modular .g projects:

Use relative paths in import statements to mirror this structure:

51

10.9 Summary

.g modules let you split logic into files and reuse functions cleanly. You now
know how to:

● Use export to expose functions from one file
● Use import to load them in another
● Resolve .g files with relative paths
● Prevent naming conflicts and circular imports

In the next chapter, we’ll explore user-defined data structures, including
how to model structured information using nested objects and custom
conventions.

52

Chapter 11 — User-Defined Types
.g is a dynamically typed language with no explicit type declarations, but
you can still design structured data using objects, arrays, and consistent
naming patterns. This chapter explains how to model real-world entities
and organize data using user-defined types and conventions.

11.1 Objects as Custom Types
You can represent structured entities (like users, products, or settings) using
plain objects.

Example: A "User" type

This object behaves like a "User" type — with named fields that can be
accessed or modified.

11.2 Accessing and Updating Fields

Use dot notation to access or update values:

You can also use bracket notation for dynamic access:

53

11.3 Nested Structures
Objects can contain other objects or arrays, creating rich data models.

Example: A user with nested contact info

11.4 Creating and Using Custom Conventions
Since .g lacks class declarations or interfaces, structure is enforced by
consistency:

54

You can think of makeUser() as a constructor function.

11.5 Checking and Validating Fields
You can inspect structure using type() and in:

Currently .g does not include hasOwnProperty() or a full in operator — but
field existence can be manually checked like this:

55

11.6 Arrays of Objects
Objects are often stored in arrays when managing collections:

This approach scales well in loops, filtering, and modular design.

11.7 Utility Patterns

1. Enum-like objects:

56

2. Struct-style fixed shapes:

You can clone or fill this shape per item.

11.8 Summary
While .g doesn’t support classes or types natively, you can still design rich,
structured data using:

● Plain objects with consistent field names
● Functions as pseudo-constructors
● Arrays for collections of objects
● Dot/bracket access for reading/writing fields
● Nested models for complex hierarchies

In the next chapter, we’ll simulate file system and command-line
interaction by building file-based tools and CLI applications using .g.

57

Chapter 12 — Building CLI and File
Tools

.g includes built-in support for reading files, writing logs, and handling
command-line arguments — making it well-suited for automation scripts,
lightweight tools, and simple CLI utilities. This chapter walks through real
examples and best practices for scripting with .g.

12.1 Accessing CLI Arguments with args()

When you run a .g script with extra arguments, they are accessible via the
global args() function.

Example:

Output:

Arguments are passed as strings, and args() always returns an array.

58

12.2 Prompting Input with input()
Use input() to ask the user for input during script execution.

This pauses execution and waits for the user to type a response.

12.3 Writing and Appending to Files
.g allows you to write logs, configs, or data files with built-in file I/O.

Example: Logging events

You can read back the file contents using:

59

12.4 Checking for Files Before Reading
Use exists(filename) to verify that a file is present.

This prevents runtime errors and allows safe fallback logic.

12.5 Deleting Files
To remove a file permanently:

Use with caution — this cannot be undone.

60

12.6 Building a Real CLI Utility
Here’s a real CLI example: a .g script that counts words in a file.

wordcount.g

Run it:

61

12.7 File-Based Configuration
You can simulate config loading with parseJSON():

This makes .g useful for dynamic or scriptable tools where options are
stored in files.

12.8 Combining Everything: Simple Installer

installer.g

Create a folder, copy this script, and .g becomes your project bootstrapper.

62

12.9 Summary
With built-in tools like read(), write(), args(), and input(), .g can be used for:

● Simple installers
● Config managers
● CLI-based editors
● File processors
● Scripting small DevOps tasks

In the next chapter — the final one — we’ll look ahead: what’s possible for
.g in future versions, and how you can contribute, extend, or customize it to
fit your own needs.

63

Chapter 13 — Future Features &
Language Design

The .g language was built from the ground up — not just to run code, but to
be hacked, shaped, and extended by its users. This chapter offers a look
ahead at possible future directions, features under consideration, and the
philosophy guiding .g's continued development.

13.1 Design Principles
.g is driven by a few key principles:

● Clarity over complexity
● Minimalism with power
● Everything is understandable
● Built with JS, embeddable in JS
● Script-first, tool-friendly

These values will continue to guide how new features are added and how
breaking changes are avoided.

13.2 Planned & Proposed Features
While .g is already usable for scripting and automation, several
enhancements are being explored:

In Progress / Experimental

● Namespaces & Scoped Imports
 Avoid global pollution and allow aliasing:

64

● Native Modules for std@1.1
 Adding env, http, os, crypto, and path modules.

● Improved catch support
 Allow accessing error messages inside catch blocks:

Under Consideration

● Pattern Matching
 Simple switch-case alternative for object structures and conditions.

● Classes or Prototypes
 A lightweight way to define reusable object templates (optional).

● Lambda / Arrow Functions
 Short function syntax:

● Command Alias System
 Allow g to execute .g scripts globally from any folder using registered
aliases.

● Code Editor Plugin
 VS Code support with syntax highlighting and .g language
extensions.

65

Won’t Add (At Least for Now)

● Complex type system
● Implicit returns
● Global mutation of built-ins
● Heavy class inheritance

.g will remain simple, flat, and learnable, even as it grows.

13.3 Language Internals: Extend & Develop
Since .g is implemented entirely in JavaScript, you can:

● Modify the tokenizer, parser, or interpreter
● Add new keywords or operators
● Replace test.js with a custom CLI
● Add new standard modules in std@1.x/

The project was intentionally designed to be understandable, not magic.

13.4 How to Contribute
Even if .g is your own private language, it can still be open to collaboration:

● Write and share .g modules
● Build tools that extend the CLI
● Contribute feature ideas to a roadmap
● Fork and remix the interpreter
● Create tutorials or share .g demos

The more you use .g, the more it evolves.

66

13.5 Summary
This final chapter outlines where .g is headed and how its flexible
foundation allows it to grow without becoming bloated. Whether you're
writing automation, building CLI tools, or just learning language internals,
.g gives you something rare:

A language you can own, understand, and extend without asking
permission.

You're now equipped with everything needed to write .g scripts, build
modules, handle files, process input, and shape your own programming
environment.

67

Appendix A — Grammar & Syntax
Reference

This appendix provides an overview of .g’s syntax rules and
grammar structures. It’s not a full formal grammar, but rather a high-level
summary for developers.

A.1 General Structure
● Statements are line-based (no semicolons).
● Blocks are enclosed in { }.
● Indentation is optional but recommended.

A.2 Variable Declaration

● All variables declared with var
● Dynamic typing

A.3 Expressions

Expressions return values and can be nested:

Supported types: number, string, boolean, null, array, object

68

A.4 Control Flow

If/Else:

While Loop:

A.5 Functions

Declaration:

Return:

69

A.6 Arrays

A.7 Objects

A.8 Import/Export

Export:

Import:

70

A.9 Try/Catch

71

Appendix B — Language Reference
A compact reference sheet for .g developers.

B.1 Reserved Keywords

B.2 Operators

Symbol Meaning

+ Add / Concatenate

- Subtract

* Multiply

/ Divide

== Equal

!= Not Equal

< Less Than

> Greater That

<= Less or Equal

>= Greater or Equal

&& Logical AND

! Logical NOT

= Assignment

. Property Access

[] Index Access

72

B.3 Built-in Functions (Global)

Function Description

say(...) Print to console

type(x) Get type of value

length(x) Length of string or array

input(prompt) Ask for user input

args() Get CLI arguments as array

read(file) Read file contents

write(file, c) Write file (overwrite)

append(file, c) Append to file

delete(file) Delete file

exists(file) Check file existence

toJSON(obj) Serialize object

parseJSON(str) Parse JSON string

now() Current ISO time string

timestamp() UNIX timestamp in ms

sleep(ms) Pause execution

listdir(path) List directory contents

73

B.4 Built-in Namespaces

Namespace Functions

math random(), round(), pow(), PI()

string upper(), lower(), split(), slice()

array push(), pop(), length(),
includes()

74

Future Updates & Feedback

The .g language is actively evolving — and your ideas, issues, and feedback
can shape its direction.

What's coming in future versions:

● Scoped imports and namespace aliasing
● New std@1.1/ modules (env, http, crypto)
● Lambda/arrow function support
● Community-driven examples and toolkits

 Have suggestions or bugs to report?

You're invited to contribute to the language’s growth. If you've built a tool,
found a bug, or have a feature request, reach out directly:

Contact:

 Gurjotpal Singh
 singhgurjotpal84@gmail.com

All feedback is welcome — whether you’re a beginner, hobbyist, or
advanced script developer.

Thanks for choosing .g

75

	Index
	Chapter
	Chapter 1 — Introduction to .g
	1.3 Installation
	1.4 Your First .g Program
	1.5 Features at a Glance
	Standard Library: std@1.0/

	1.7 Summary

	
	
	Chapter 2 — Language Basics
	
	2.1 Variable Declarations
	Syntax:

	
	
	2.2 Built-in Data Types
	2.3 Output with say
	Example:

	2.6 Comments
	2.7 Code Formatting
	Example:

	2.8 Summary

	Chapter 3 — Control Flow
	Use if to execute code only when a condition is true. You can optionally include an else block for alternative behavior.
	Syntax:
	3.2 Chained Conditions with else if
	Syntax:

	3.5 Null and Boolean Conditions
	
	3.6 Common Pitfalls
	3.7 Summary

	Chapter 4 — Functions
	4.1 Function Declarations
	Syntax:

	
	
	4.2 Calling Functions
	Example:

	4.3 Returning Values
	Example:

	
	
	
	4.4 Local Scope
	4.5 Nested Function Calls
	4.6 Function Composition & Reuse
	4.7 Exporting and Importing Functions
	4.8 Summary

	Chapter 5 — Logic and Conditions
	5.1 Boolean Values
	
	
	
	
	5.2 Comparison Operators
	5.3 Logical Operators
	5.4 Truthy and Falsy Values
	5.5 Logical Grouping with Parentheses
	5.6 Negation with !
	5.7 Combining Conditions
	5.8 Summary

	Chapter 6 — Arrays and Objects
	6.1 Arrays
	Example:
	6.1.1 Accessing Array Elements
	6.1.2 Modifying Arrays
	6.1.3 Built-in Array Functions

	6.2 Objects
	Example:
	
	6.2.1 Accessing and Updating Properties
	
	
	
	
	6.2.2 Nested Objects

	6.3 Arrays of Objects
	6.4 Objects as Function Arguments
	6.5 Summary

	Chapter 7 — Built-in Functions
	7.1 type(value)
	Examples:

	7.2 length(value)
	Examples:

	7.3 input(prompt)
	7.4 args()
	Command:
	Script:

	
	
	
	7.5 File I/O Functions
	read(filename)
	write(filename, content)
	append(filename, content)
	Appends content to an existing file.
	
	
	
	append(filename, content)
	exists(filename)
	delete(filename)

	7.6 JSON Utilities
	toJSON(value)
	
	parseJSON(string)

	7.7 Time Utilities
	now()
	timestamp()
	
	
	
	
	sleep(ms)

	7.8 Summary

	
	Chapter 8 — Error Handling
	8.1 The try / catch Statement
	Syntax:

	8.2 Scope Inside try / catch
	8.3 Common Error Sources
	8.4 No Error Object (yet)
	8.5 Nested Error Handling
	8.6 Defensive Programming
	8.7 Summary

	Chapter 9 — The Standard Library (std@1.0/)
	9.1 math Module
	Common Math Functions:
	Examples:

	9.3 array Module
	Examples:

	9.4 fs Module (File I/O)
	
	9.5 time and sleep Utilities
	Timestamps and ISO Strings:
	9.6 CLI Tools
	Input Prompt:

	
	
	9.7 JSON Handling
	Convert Object to JSON:

	
	
	
	
	9.9 Summary

	Chapter 10 — Modules and Imports
	10.1 Exporting Functions
	Example: math.g

	
	
	10.2 Importing Functions
	Syntax:

	10.3 How Imports Work Internally
	10.5 Importing from Multiple Files
	
	
	
	10.6 Import Errors
	10.7 No Circular Imports
	10.8 Suggested File Structure
	10.9 Summary

	Chapter 11 — User-Defined Types
	Example: A "User" type
	Use dot notation to access or update values:
	11.3 Nested Structures
	11.5 Checking and Validating Fields
	11.7 Utility Patterns
	1. Enum-like objects:
	11.8 Summary

	Chapter 12 — Building CLI and File Tools
	12.1 Accessing CLI Arguments with args()
	Example:

	12.2 Prompting Input with input()
	12.3 Writing and Appending to Files
	Example: Logging events

	
	
	12.4 Checking for Files Before Reading
	12.5 Deleting Files
	
	
	
	
	12.6 Building a Real CLI Utility
	wordcount.g

	
	
	
	12.7 File-Based Configuration
	12.8 Combining Everything: Simple Installer
	installer.g

	Chapter 13 — Future Features & Language Design
	13.2 Planned & Proposed Features
	In Progress / Experimental
	Under Consideration
	
	
	Won’t Add (At Least for Now)

	13.3 Language Internals: Extend & Develop
	13.4 How to Contribute
	
	
	13.5 Summary

	Appendix A — Grammar & Syntax Reference
	This appendix provides an overview of .g’s syntax rules and grammar structures. It’s not a full formal grammar, but rather a high-level summary for developers.
	
	A.1 General Structure

	●Statements are line-based (no semicolons).
	●Blocks are enclosed in { }.
	●Indentation is optional but recommended.
	A.3 Expressions
	Expressions return values and can be nested:
	A.4 Control Flow
	If/Else:

	A.5 Functions
	Declaration:

	A.8 Import/Export
	Export:

	
	
	
	
	
	
	
	
	Appendix B — Language Reference
	A compact reference sheet for .g developers.
	B.1 Reserved Keywords

	B.3 Built-in Functions (Global)
	
	
	
	
	
	
	
	
	Future Updates & Feedback
	The .g language is actively evolving — and your ideas, issues, and feedback can shape its direction.
	What's coming in future versions:
	 Have suggestions or bugs to report?

